Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Br J Haematol ; 198(4): 668-679, 2022 08.
Article in English | MEDLINE | ID: covidwho-1874397

ABSTRACT

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hematopoietic Stem Cell Transplantation , Age Factors , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , Bone Marrow Transplantation/adverse effects , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroconversion , Transplantation, Homologous/adverse effects , Vaccination/adverse effects
3.
EBioMedicine ; 75: 103761, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587930

ABSTRACT

BACKGROUND: Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. METHODS: To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). FINDINGS: Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. INTERPRETATION: In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. FUNDING: This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.


Subject(s)
Antibodies, Neutralizing/immunology , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Immunity, Cellular/drug effects , Immunization, Secondary , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/immunology , ChAdOx1 nCoV-19/immunology , Female , Humans , Male , Middle Aged , Prevalence
4.
ESMO Open ; 7(1): 100359, 2022 02.
Article in English | MEDLINE | ID: covidwho-1560850

ABSTRACT

BACKGROUND: The durability of immunogenicity of SARS-CoV-2 vaccination in cancer patients remains to be elucidated. We prospectively evaluated the immunogenicity of the vaccine in triggering both the humoral and the cell-mediated immune response in cancer patients treated with anti-programmed cell death protein 1/programmed death-ligand 1 with or without chemotherapy 6 months after BNT162b2 vaccine. PATIENTS AND METHODS: In the previous study, 88 patients were enrolled, whereas the analyses below refer to the 60 patients still on immunotherapy at the time of the follow-up. According to previous SARS-CoV-2 exposure, patients were classified as SARS-CoV-2-naive (without previous SARS-CoV-2 exposure) and SARS-CoV-2-experienced (with previous SARS-CoV-2 infection). Neutralizing antibody (NT Ab) titer against the B.1.1 strain and total anti-spike immunoglobulin G concentration were quantified in serum samples. The enzyme-linked immunosorbent spot assay was used for quantification of anti-spike interferon-γ (IFN-γ)-producing cells/106 peripheral blood mononuclear cells. Fifty patients (83.0%) were on immunotherapy alone, whereas 10 patients (7%) were on chemo-immunotherapy. We analyzed separately patients on immunotherapy and patients on chemo-immunotherapy. RESULTS: The median T-cell response at 6 months was significantly lower than that measured at 3 weeks after vaccination [50 interquartile range (IQR) 20-118.8 versus 175 IQR 67.5-371.3 IFN-γ-producing cells/106 peripheral blood mononuclear cells; P < 0.0001]. The median reduction of immunoglobulin G concentration was 88% in SARS-CoV-2-naive subjects and 2.1% in SARS-CoV-2-experienced subjects. SARS-CoV-2 NT Ab titer was maintained in SARS-CoV-2-experienced subjects, whereas a significant decrease was observed in SARS-CoV-2-naive subjects (from median 1 : 160, IQR 1 : 40-1 : 640 to median 1 : 20, IQR 1 : 10-1 : 40; P < 0.0001). A weak correlation was observed between SARS-CoV-2 NT Ab titer and spike-specific IFN-γ-producing cells at both 6 months and 3 weeks after vaccination (r = 0.467; P = 0.0002 and r = 0.428; P = 0.0006, respectively). CONCLUSIONS: Our work highlights a reduction in the immune response in cancer patients, particularly in SARS-CoV-2-naive subjects. Our data support administering a third dose of COVID-19 vaccine to cancer patients treated with programmed cell death protein 1/programmed death-ligand 1 inhibitors.


Subject(s)
B7-H1 Antigen , BNT162 Vaccine , COVID-19 , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Follow-Up Studies , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/immunology , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology
6.
Biomed Pharmacother ; 144: 112230, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1517059

ABSTRACT

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has become a serious challenge for medicine and science. Analysis of the molecular mechanisms associated with the clinical manifestations and severity of COVID-19 has identified several key points of immune dysregulation observed in SARS-CoV-2 infection. For diabetic patients, factors including higher binding affinity and virus penetration, decreased virus clearance and decreased T cell function, increased susceptibility to hyperinflammation, and cytokine storm may make these patients susceptible to a more severe course of COVID-19 disease. Metabolic changes induced by diabetes, especially hyperglycemia, can directly affect the immunometabolism of lymphocytes in part by affecting the activity of the mTOR protein kinase signaling pathway. High mTOR activity can enhance the progression of diabetes due to the activation of effector proinflammatory subpopulations of lymphocytes and, conversely, low activity promotes the differentiation of T-regulatory cells. Interestingly, metformin, an extensively used antidiabetic drug, inhibits mTOR by affecting the activity of AMPK. Therefore, activation of AMPK and/or inhibition of the mTOR-mediated signaling pathway may be an important new target for drug therapy in COVID-19 cases mostly by reducing the level of pro-inflammatory signaling and cytokine storm. These suggestions have been partially confirmed by several retrospective analyzes of patients with diabetes mellitus hospitalized for severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Immunity, Cellular/drug effects , Metformin/therapeutic use , Severity of Illness Index , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Humans , Hypoglycemic Agents/pharmacology , Immunity, Cellular/physiology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Metformin/pharmacology , Mortality/trends , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
8.
Sci Immunol ; 6(66): eabl5344, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1494931

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing hospitalization from severe COVID-19. However, multiple reports of breakthrough infections and of waning antibody titers have raised concerns on the durability of the vaccine, and current vaccination strategies now propose administration of a third dose. Here, we monitored T cell responses to the Spike protein of SARS-CoV-2 in 71 healthy donors vaccinated with two doses of the Pfizer-BioNTech mRNA vaccine (BNT162b2) for up to 6 months after vaccination. We found that vaccination induced the development of a sustained anti-viral CD4+ and CD8+ T cell response. These cells appeared before the development of high antibody titers, displayed markers of immunological maturity and stem cell memory, survived the physiological contraction of the immune response, and persisted for at least 6 months. Collectively, these data show that vaccination with BNT162b2 elicits an immunologically competent and long-lived SARS-CoV-2­specific T cell population.


Subject(s)
BNT162 Vaccine/administration & dosage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/drug effects , Memory T Cells/immunology , SARS-CoV-2/immunology , Stem Cells/immunology , COVID-19/prevention & control , Female , Humans , Male
9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1493337

ABSTRACT

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Cellular/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Female , Humans , Imidazoles/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Male , Middle Aged , Toll-Like Receptors/immunology
12.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478718

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
13.
Br J Haematol ; 196(3): 548-558, 2022 02.
Article in English | MEDLINE | ID: covidwho-1467542

ABSTRACT

Patients affected by lymphoid malignancies (LM) are frequently immune-compromised, suffering increased mortality from COVID-19. This prospective study evaluated serological and T-cell responses after complete mRNA vaccination in 263 patients affected by chronic lymphocytic leukaemia, B- and T-cell lymphomas and multiple myeloma. Results were compared with those of 167 healthy subjects matched for age and sex. Overall, patient seroconversion rate was 64·6%: serological response was lower in those receiving anti-cancer treatments in the 12 months before vaccination: 55% vs 81·9% (P < 0·001). Anti-CD20 antibody plus chemotherapy treatment was associated with the lowest seroconversion rate: 17·6% vs. 71·2% (P < 0·001). In the multivariate analysis conducted in the subgroup of patients on active treatment, independent predictors for seroconversion were: anti-CD20 treatment (P < 0·001), aggressive B-cell lymphoma diagnosis (P = 0·002), and immunoglobulin M levels <40 mg/dl (P = 0·030). The T-cell response was evaluated in 99 patients and detected in 85 of them (86%). Of note, 74% of seronegative patients had a T-cell response, but both cellular and humoral responses were absent in 13·1% of cases. Our findings raise some concerns about the protection that patients with LM, particularly those receiving anti-CD20 antibodies, may gain from vaccination. These patients should strictly maintain all the protective measures.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , BNT162 Vaccine/administration & dosage , COVID-19 , Hematologic Neoplasms , Immunity, Cellular/drug effects , Lymphoproliferative Disorders , SARS-CoV-2/immunology , T-Lymphocytes/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Aged , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/immunology , Humans , Immunoglobulin M/immunology , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/immunology , Male , Middle Aged , Prospective Studies , Seroconversion
14.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1463086

ABSTRACT

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Immunity, Cellular/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Adult , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
15.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1386766

ABSTRACT

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/administration & dosage , Alphavirus/genetics , Alphavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Gene Expression , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Transgenic , Replicon/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Transgenes , Treatment Outcome , Vaccination/methods , Vaccines, Synthetic/biosynthesis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
17.
Clin Res Cardiol ; 110(8): 1142-1149, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1303315

ABSTRACT

AIMS: Immunocompromised patients have been excluded from studies of SARS-CoV-2 messenger RNA vaccines. The immune response to vaccines against other infectious agents has been shown to be blunted in such patients. We aimed to analyse the humoral and cellular response to prime-boost vaccination with the BNT162b2 vaccine (Pfizer-BioNTech) in cardiothoracic transplant recipients. METHODS AND RESULTS: A total of 50 transplant patients [1-3 years post heart (42), lung (7), or heart-lung (1) transplant, mean age 55 ± 10 years] and a control group of 50 healthy staff members were included. Blood samples were analysed 21 days after the prime and the boosting dose, respectively, to quantify anti-SARS-CoV-2 spike protein (S) immunoglobulin titres (tested by Abbott, Euroimmun and RocheElecsys Immunoassays, each) and the functional inhibitory capacity of neutralizing antibodies (Genscript). To test for a specific T-cell response, heparinized whole blood was stimulated with SARS-CoV-2 specific peptides, covering domains of the viral spike, nucleocapsid and membrane protein, and the interferon-γ release was measured (QuantiFERON Monitor ELISA, Qiagen). The vast majority of transplant patients (90%) showed neither a detectable humoral nor a T-cell response three weeks after the completed two-dose BNT162b2 vaccination; these results are in sharp contrast to the robust immunogenicity seen in the control group: 98% exhibited seroconversion after the prime dose already, with a further significant increase of IgG titres after the booster dose (average > tenfold increase), a more than 90% inhibition capability of neutralizing antibodies as well as evidence of a T-cell responsiveness. CONCLUSIONS: The findings of poor immune responses to a two-dose BNT162b2 vaccination in cardiothoracic transplant patients have a significant impact for organ transplant recipients specifically and possibly for immunocompromised patients in general. It urges for a review of future vaccine strategies in these patients.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Heart Transplantation/adverse effects , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Immunosuppressive Agents/adverse effects , Lung Transplantation/adverse effects , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/immunology , COVID-19 Vaccines/adverse effects , Case-Control Studies , Female , Heart-Lung Transplantation/adverse effects , Humans , Immunization Schedule , Immunocompromised Host , Immunosuppressive Agents/administration & dosage , Male , Middle Aged , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transplant Recipients , Vaccination , Young Adult
18.
J Virol ; 95(17): e0066721, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1274527

ABSTRACT

Cellular immune responses play a key role in the control of viral infection. The nucleocapsid (N) protein of infectious bronchitis virus (IBV) is a major immunogenic protein that can induce protective immunity. To screen for potential T-cell epitopes on IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. Four T-cell epitope peptides were identified by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining, and carboxyfluorescein succinimidyl ester (CFSE) lymphocyte proliferation assays; among them, three peptides (N211-230, N271-290, and N381-400) were cytotoxic T lymphocyte (CTL) epitopes, and one peptide (N261-280) was a dual-specific T-cell epitope, which can be recognized by both CD8+ and CD4+ T cells. Multi-epitope gene transcription cassettes comprising four neutralizing epitope domains and four T-cell epitope peptides were synthesized and inserted into the genome of Newcastle disease virus strain La Sota between the P and M genes. Recombinant IBV multi-epitope vaccine candidate rLa Sota/SBNT was generated via reverse genetics, and its immune protection efficacy was evaluated in specific-pathogen-free chickens. Our results show that rLa Sota/SBNT induced IBV-specific neutralizing antibody and T-cell responses and provided significant protection against homologous and heterologous IBV challenge. Thus, the T-cell epitope peptides identified in this study could be good candidates for IBV vaccine development, and recombinant Newcastle disease virus-expressing IBV multi-epitope genes represent a safe and effective vaccine candidate for controlling infectious bronchitis. IMPORTANCE T-cell-mediated immune responses are critical for the elimination of IBV-infected cells. To screen conserved T-cell epitopes in the IBV N protein, 40 overlapping peptides covering the entirety of the N protein were designed and synthesized. By combining IFN-γ ELISpot, intracellular cytokine staining, and CFSE lymphocyte proliferation assays, we identified three CTL epitopes and one dual-specific T-cell epitope. The value of T-cell epitope peptides identified in the N protein was further verified by the design of an IBV multi-epitope vaccine. Results show that IBV multi-epitope vaccine candidate rLa Sota/SBNT provided cross protection against challenges with a QX-like or a TW-like IBV strain. So, T-cell-mediated immune responses play an important role in the control of viral infection, and conserved T-cell epitopes serve as promising candidates for use in multi-epitope vaccine construction. Our results provide a new perspective for the development of a safer and more effective IBV vaccine.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular/immunology , Infectious bronchitis virus/immunology , Nucleocapsid Proteins/immunology , Poultry Diseases/prevention & control , Viral Vaccines/administration & dosage , Animals , Chickens , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Cellular/drug effects , Poultry Diseases/immunology , Specific Pathogen-Free Organisms , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology
20.
Br J Haematol ; 194(6): 999-1006, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258906

ABSTRACT

Patients receiving targeted cancer treatments such as tyrosine kinase inhibitors (TKIs) have been classified in the clinically extremely vulnerable group to develop severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including patients with chronic myeloid leukaemia (CML) taking TKIs. In addition, concerns that immunocompromised individuals with solid and haematological malignancies may not mount an adequate immune response to a single dose of SARS-CoV-2 BNT162b2 (Pfizer-BioNTech) vaccine have been raised. In the present study, we evaluated humoral and cellular immune responses after a first injection of BNT162b2 vaccine in 16 patients with CML. Seroconversion and cellular immune response before and after vaccination were assessed. By day 21 after vaccination, anti-Spike immunoglobulin G was detected in 14/16 (87·5%) of the patients with CML and all developed a neutralising antibody response [serum dilution that inhibits 50% infection (ID50 ) >50], including medium (ID50 of 200-500) or high (ID50 of 501-2000) neutralising antibodies titres in nine of the 16 (56·25%) patients. T-cell response was seen in 14/15 (93·3%) evaluable patients, with polyfunctional responses seen in 12/15 (80%) patients (polyfunctional CD4+ response nine of 15, polyfunctional CD8+ T-cell response nine of 15). These data demonstrate the immunogenicity of a single dose of SARS-CoV-2 BNT162b2 vaccine in most patients with CML, with both neutralising antibodies and polyfunctional T-cell responses seen in contrast to patients with solid tumour or lymphoid haematological malignancies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 , Hematologic Neoplasms/immunology , Immunity, Cellular/drug effects , Immunoglobulin G/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , SARS-CoV-2/immunology , Adult , Aged , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Female , Hematologic Neoplasms/drug therapy , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Male , Middle Aged , Protein Kinase Inhibitors/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL